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Preliminaries

RDF & Property Graphs:

e RDF: subject—predicate—object triples, semantic interoperability via ontologies.

e PGs: nodes/edges with labels and key—value properties; flexible, used in industry.
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Key difference: RDF edges (triples) can’t hold properties; PG edges can.
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Schema Discovery Problem in PGs

“Given a property graph of arbitrary size and structure, with missing type information,
heterogeneous properties, and frequent updates, infer the schema graph
efficiently and accurately.”

Challenges:
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abel heter(.)ge_nelty and Evolving datasets
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Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:
Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties
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Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:
Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances These are usually the
types you are going to find
Case 4: No labels to all instances and inconsistent properties In real "°’sy datasets

@bc sok column2
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We cannot assume that these are the same type
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Ambiguities in Integrated Datasets

Dataset: Spider-Man
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Ambiguities in Integrated Datasets last name:

Garfield first name:
Andrew

Ac,
CUSES
fullName: Tom
Holland name:
Tobey

Is anyone the imposter? ¢



Ambiguities in Integrated Datasets

No one was an imposter, but how could
we know? éj)

The data had different type labels, and
different properties.

Spider-Man: No Way Home (2021)



What is a type?



Patterns & Types

We identify patterns in the data in order to extract our types.
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PG-HIVE: Hybrid Incremental Schema Discovery for PGs

HYBRID INCREMENTAL
Labels Batch processing
Properties Merging schemas

Graph characteristics



PG-HIVE: Hybrid Incremental Schema Discovery for PGs

Type Extraction
Merge by labels or Jaccard
for unlabeled

4 N

Post Processing (optional)

Data Load Preprocessing Clustering
Nodes,Edges Representation Vectors Nodes & Edges

Property Constraints Data Type Inference Cardinalities
mandatory/optional STRING, INTEGER, DATE,... 1:1, 1:N, M:N,...

L

Schema Serialization
PG-Schema & XSD




PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}

hobby: photography v2

vl

el vl={w2v{Person},{0-1{name,age,hobby}}}

WAS_BORN Place v2={w2v{PIace},{0-1{name,age,hObe}}}
date: 19-12-1999 (404) :: el={w2v{Person},w2v{Place},w2v{WAS BORN},

{0-1{name}}}

Person
(101)

age: 25

name: Alice name: UK
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PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

vi={{Word2Vec_label},{one-hot encoded properties}}
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el vl={w2v{2,1,4},{0-1{1,1,1}}}
berson | WAS_BORN Place Z>v2={w2v{1,6,3},{0-1{1,0,0}}}
B date:19-12-1999 \ ¢ (404) e1={w2v{2,1,4},w2v{1,6,3}, w2v{1,1,1},{0-1{1}}}
age: 25

name: Alice name: UK




PG-HIVE: Clustering

We use two clustering algorithms:

ELSH MinHash LSH

Euclidean distance Jaccard Similarity
Parameters: T, b Parameter: T
T: number of hash tables T: number of hash tables
b: bucket length Performs better in set-like data

Performs better in feature vectors
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We use two clustering algorithms:

ELSH MinHash LSH

Euclidean distance Jaccard Similarity
Parameters: T, b Parameter: T
T: number of hash tables T: number of hash tables
b: bucket length Performs better in set-like data

Performs better in feature vectors
~
°79
How to choose the best parameters? . =



PG-HIVE: LSH

How does LSH work?

vectors

\

hashing

hash buckets

o0
®

clusters

—
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PG-HIVE: LSH

How does LSH work?

more hash tables T = more chances to collide

vectors hashing hash buckets clusters
o I oo
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PG-HIVE: LSH

How does LSH work? bigger hash buckets b = more collisions

vectors hashing hash buckets clusters
o I oo
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PG-HIVE: LSH

In our case

vectors

o600

\

input data

nodes & edges

Z—

LSH

clusters

candidate types




PG-HIVE: Adaptive parameterization
hash buckets hash buckets
To avoid manual tuning of LSH, we introduce an

adaptive selection of b and 7. ‘ Q ‘ Q
For sparse graph we increase the bucket . ‘ ‘ .

length and hash tables

VS.
For less sparse graphs we decrease them ‘ ‘

increasing T = more chances to collide
increasing b = more collisions, higher recall
but lower precision small b bigger b




PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones
that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)

age hobby age
age
name ﬂ[ > e ——
hobby
SULTENTE surname

name bday bday
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PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones
that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)

name

name
ABSTRACT
name [ > g 4 lat
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PG-HIVE: Post Processing

The post processing step is optional infers:
(i) property constraints
(ii) data type inference

(iii) cardinalities

Post Processing (optional)
Property Constraints Data Type Inference Cardinalities
mandatory/optional STRING, INTEGER, DATE,... 1:1, 1:N, M:N,...




PG-HIVE: Post Processing - Property Constraints

A property is characterized as mandatory for a given type if it appears in every instance of

that type, otherwise, it is considered optional.

age:1

name: Bob

Person
(001)

hobby: tennis

hobby

age’

Person -
(101) name: Alice
surname: Snow
age: 12

Property Constraints

mandatory/optional

name*

surname




PG-HIVE: Post Processing - Data Types

We use heuristics to find the data type of each property:

INTEGER — FLOAT — BOOLEAN — DATE — STRING (fallback)

age:1

name: Bob

Person
(001)

hobby: tennis

Person 5
(101) name: Alice

surname: Snow
age: 12

INTEGER

hobby

*

age

STRING

Data Type Inference
STRING, INTEGER, DATE,...

*using sampling

STRING
name*

surname

STRING




PG-HIVE: Post Processing - Cardinalities

To find the cardinalities of edge types, we query how many distinct targets each source
connects to, for each edge type, and vice versa.

Person Ukg
S

(001)

Person Person:Org =N,1

(202) Person:Post = 0O,N
WORKS

Wo,
Ris LIKES

Org. Cardinalities

(404) 1:1, 1:N, M:N, ...




PG-HIVE: Incremental Module

To process big datasets in different settings we have also an incremental module

Dataset N size —_—

Dataset Dataset Dataset
NO size N1 size Nm size
Schema Serialization ‘

l
et }— PG-H |VE?3J—[

PG-Schema & XSD




PG-HIVE: Serialization - XSD

kxs:schema name="NewGraphSchema" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="Place">
<XS:sequence>
<xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="1id" type="xs:double" minOccurs="1" maxOccurs="1"/>
<xs:element name="url" type="xs:string" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:ID" use="required"/>
<xs:attribute name="label" type="xs:string"/>
</xs:complexType>
<xs:complexType name="Person">
<XS:sequence>
<xs:element name="lastName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="firstName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="birthday" type="xs:date" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:ID" use="required"/>
<xs:attribute name="label" type="xs:string"/>
</xs:complexType>
<xs:complexType name="IS_LOCATED_IN">
<XS:sequence>
<xs:element name="source" type="Person"/>
<xs:element name="target" type="Place"/>
</Xs:sequence>
</xs:complexType>
</xs:schema>



PG-HIVE: Serialization - PG-Schema

CREATE GRAPH TYPE NewGraphSchema LOOSE { LOOSE
(PlaceType: Place {type STRING, name STRING, id DOUBLE, url STRING}),
(PersonType: Person {lastName STRING, firstName STRING, birthday DATE}),
(EmailType: Email {address STRING}),
(:PersonType)-[HAS_EMAILType: HAS_EMAIL]->(:EmailType),
(:PersonType)-[IS_LOCATED_INType: IS_LOCATED_IN]->(:PlaceType),

} CREATE NODE TYPE PlaceType : Place {type STRING, name STRING, id DOUBLE, url STRING};

CREATE NODE TYPE PersonType : Person {lastName STRING, firstName STRING, birthday DATE};
CREATE NODE TYPE EmailType : Email {address STRING};

CREATE EDGE TYPE has_emailType : HAS_EMAIL;
CREATE EDGE TYPE is_located_inType : IS_LOCATED_IN;

CREATE GRAPH TYPE NewGraphSchema STRICT {
(PlaceType),
(PersonType),
STRICT (EmailType),
(:PersonType)-[has_emailType]->(:EmailType),
(:PersonType)-[is_located_inType]->(:PlaceType),

FOR (x:EmailType) SINGLETON x WITHIN (:PersonType)-[y: has_emailType]->(x)
FOR (x:PersonType) SINGLETON y WITHIN (x)-[y: is_located_inType]->(:PlaceType)



Part 3:
Evaluation
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Previous Work on Schema Discovery for PGs

Scheml1

GMMSchema2

DiscoPG>

PG-HIVE (ours)

Label Independent

X

X

X

Multi Labeled Elements

X

Schema Elements

Nodes & Edges

Nodes only

Nodes & queries
associated Edges

Nodes & Edges &
constraints

Constraints

X

X

X

Incremental x x
Automation + Ul
Notes Cannot handle missing GMM clustering, can not Demo of GMMSchema LSH + fine tuning

labels

handle missing labels

Scheml:Lbath, H., Bonifati, A., Harmer, R.: Schema inference for property graphs.EDBT 2021
2GMMSchema: Bonifati, A., Dumbrava, S., Mir, N.: Hierarchical clustering for property graph schema discovery. EDBT 2022
3DiscoPG:Bonifati, A., Dumbrava, S., Martinez, E., Ghasemi, F., Jaffré, M., Luton, P., Pickles, T.: Discopg: Property graph schema discovery and exploration. Proc. VLDB 2022




PG-HIVE Evaluation: Datasets

Node | Edge | Node | Edge | Node | Edge | Real

Dataset Nodes Edges Types | Types | Labels | Labels | Pat. | Pat. | Synth.
POLE 61,521 105,840 11 17 11 16 11 16

MB6 486,267 961,571 4 5 10 3 52 9

HET.IO 47,031 2,250,197 11 24 12 24 14 38 R
FIB25 802,473 1,625,428 4 5 10 3 3l 9

IC) 2,016,523 3,339,267 5 14 6 14 2,263 38 R
LDBC 3,181,724 | 17,256,038 7 17 3 15 9 23

CORD19 | 36,025,729 | 59,768,373 6 5 6 5 89 6 R
IYP 44,539,999 | 251,432,812 32 24 33 24 25,137 | 790 R

Environment: Spark cluster (4 nodes x 38 cores), Scala 2.12.10, Neo4j 4.4.0




PG-HIVE Evaluation: F1-score

100% label information
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PG-HIVE Evaluation: Statistical Significance

Nodes
Scheml
PG-HIVE-MinHash 1 2 3 ) GMM
| e — | | e |
Edges
PG-HIVE-MinHash SchemlI

p—
Do

Statistical significance analysis of F1-scores across datasets for nodes (top)
and edges (bottom) --GMM does not produce edge types.



PG-HIVE Evaluation: Execution Time

POLE MB6
20
s Ll
5 10
0 0
0 10 20 30 40 0 10 20 30 40

Exec. Time (s)

Exec. Time (s)
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“Lububioluhe
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‘IT ‘IT II'T lrl LT

PG-HIVE-ELSH M PG-HIVE-MinHash
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40
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(=}

4,000

2,000

ilalnln

IYP
‘ﬂ LT ‘l’] ‘I’I L’l
0 10 20 30 40

Execution time until type discovery on each dataset across different noise

percentages (0% - 40%)



Nodes

Edges

PG-HIVE Evaluation: Adaptive Parameterization

POLE HETIO FIB25 ICh LDBC CORD19
(18307) 0.75

3F F B q l xmgl
2 @01 0.8
1 *F1:0.98 (10,0.86) (10 0.63) * F1:0.90 (10,0.46) *F1:1.0 0.85
0 ‘ * F1:0.99 "Fll * F1:0.99 X F1:1.0 0.9
) 0.75

3 | | \
2 0.8
1 (5051) (8,0.90) (8,0.90) (9,0.28) (15,0.51) (9,0.21) (19,0.51) 0.85
0 *F1:0.99 X F1:1.0 . *F1:09 *F1:1.0 * F1:0.99 XF1:1 * F1:0.99 0.9
5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 5 10 20 30 40 ’
T T T L T T T T

Heatmaps of F1-scores across datasets (100% label availability & 0% noise)
for nodes (top) and edges (bottom) with varying T and b;
red x (T, b) denotes the adaptive choice for ELSH.



PG-HIVE Evaluation: Incremental Execution

Exec. Time (s)

Exec. Time (s)

100

PG-HIVE-ELSH

1 2 3 4 5 6 7 8 9 10

:
%

A W "2 A — V- A VY

A

ICT)

1 2 3 4 5 6 7 8 9 10
X—>—X MB6 4+—=—a HETIO e—e—e FIB25

¥—>x—x LDBC CORD19

Incremental execution time per
iteration. We separate each
dataset in 10 equal parts.



PG-HIVE Evaluation: Data Type Inference Sampling Error

[1o0-0.05 [l0.05-0.10 [Jo0.10-020 HE > 0.20

ELSH MinHash
g 1
o
5 0.9
o
S 08| -
o
0.
"mEo5F52%58& H59853%E
S =L A= Qg"~ o = 8= a8~
A <2 I & i A e —

Distribution of data type inference errors using sampling, across datasets for ELSH
(left) and MinHash (right).



Future Work

Schema Discovery:

Handle unlabeled and highly sparse graphs

Use LLMs to align and normalize labels across datasets/languages
Support provenance, versioning, and schema evolution

Use association rule mining to discover subtypes



Thank you

PG-HIVE github repo



