Schema Discovery

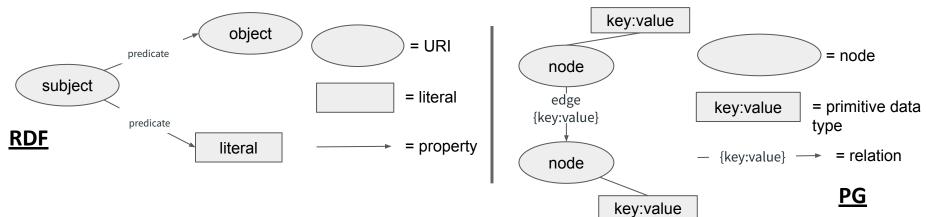
CS-562 Lab 5

Sophia Sideri

Preliminaries

RDF & Property Graphs:

- RDF: subject-predicate-object triples, semantic interoperability via ontologies.
- PGs: nodes/edges with labels and key-value properties; flexible, used in industry.



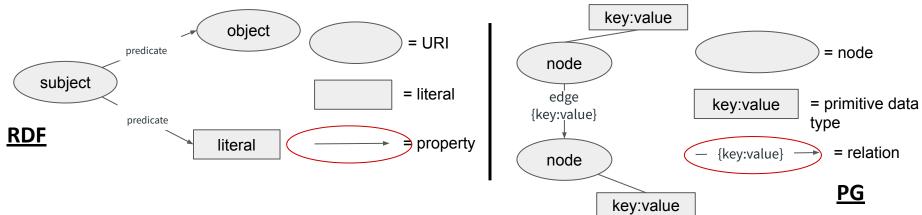
Both are labeled graphs.

Key difference: RDF edges (triples) can't hold properties; PG edges can.

Preliminaries

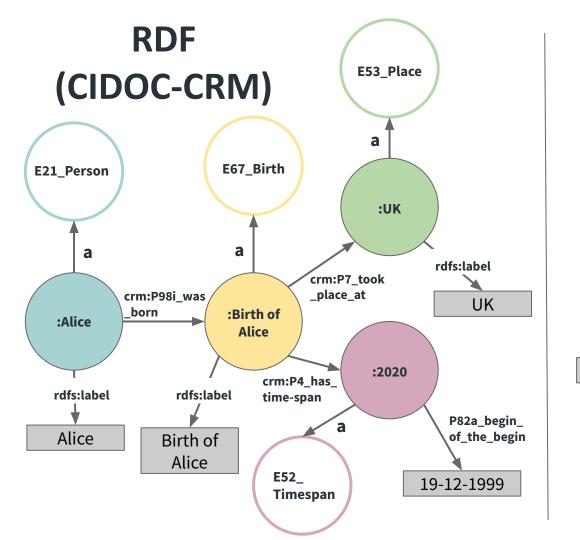
RDF & Property Graphs:

- **RDF**: subject–predicate–object triples, semantic interoperability via ontologies.
- PGs: nodes/edges with labels and key-value properties; flexible, used in industry.

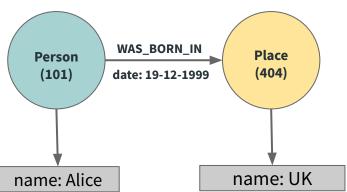


Both are labeled graphs.

Key difference: RDF edges (triples) can't hold properties; PG edges can.



PG



Schema Discovery Problem in PGs

"Given a property graph of **arbitrary size and structure**, with **missing type** information, **heterogeneous properties**, and **frequent updates**, infer the schema graph efficiently and accurately."

Challenges:

Label heterogeneity and ambiguity

Efficiency

Evolving datasets

Schema constraint level

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties



We cannot assume that these are the same type

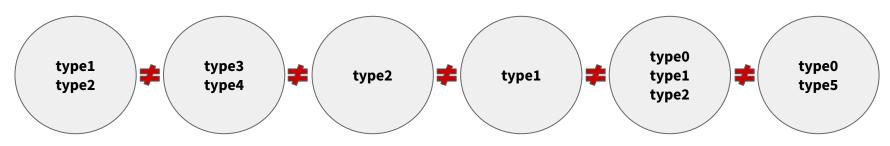
In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties



We cannot assume that these are the same type

In real datasets we might have several difficult cases to identify types:

_sd\$22

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

#ok

f454_

@bc

lalal

Case 4: No labels to all instances and inconsistent properties

column2
row4
cell3

type
_sth

These are usually the

types you are going to find

We cannot assume that these are the same type

_p33

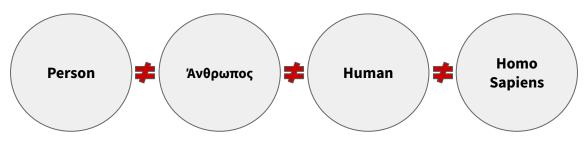
In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties



We cannot assume that these are the same type

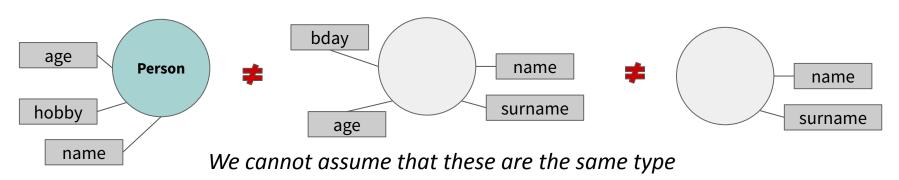
In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties



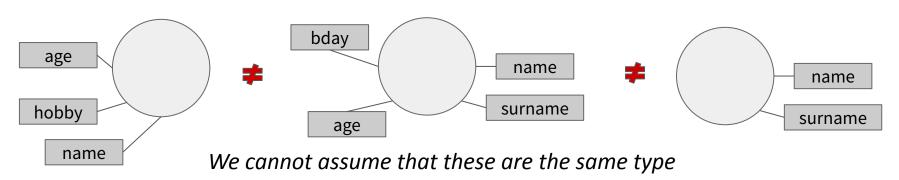
In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

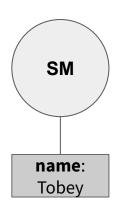
Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties



Dataset: Spider-Man



Tobey

Dataset: Spider-Man

Dataset: The Amazing Spider-Man

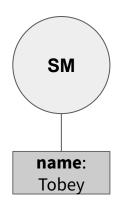
SM

last name:
Garfield

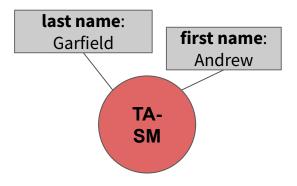
TASM

TASM

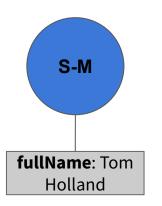
Dataset: Spider-Man

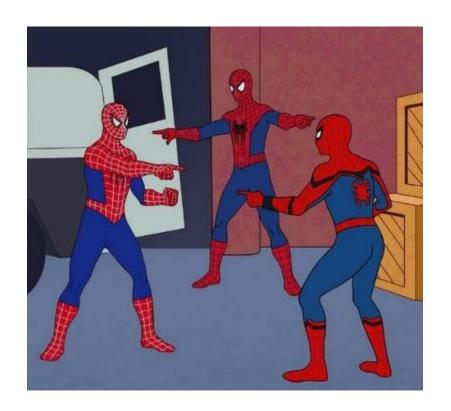


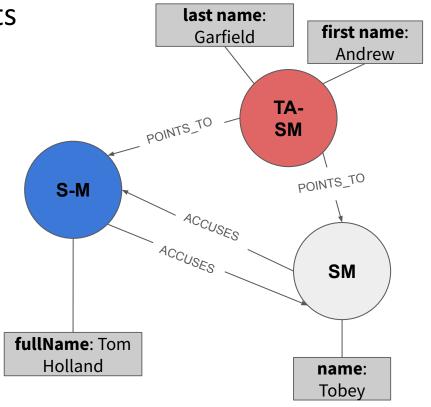
Dataset: The Amazing Spider-Man



Dataset: Spider-Man, Homecoming







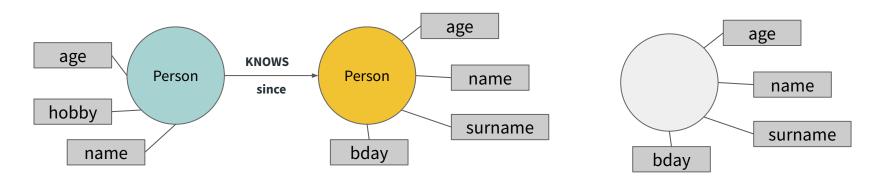
Is anyone the imposter? ••

No one was an imposter, but how could we know?

The data had different type labels, and different properties.

What is a *type*?

We identify patterns in the data in order to extract our types.

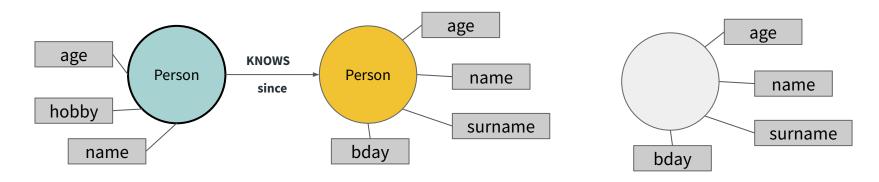


Pattern 1: {Person}, {age, hobby, name}

Pattern 2: {Person}, {age, name, surname, bday}

Pattern 3: {∅}, {age, name, surname, bday}

We identify patterns in the data in order to extract our types.

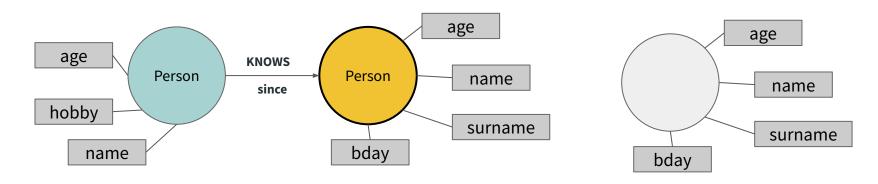


Pattern 1: {Person}, {age, hobby, name}

Pattern 2: {Person}, {age, name, surname, bday}

Pattern 3: {∅}, {age, name, surname, bday}

We identify patterns in the data in order to extract our types.

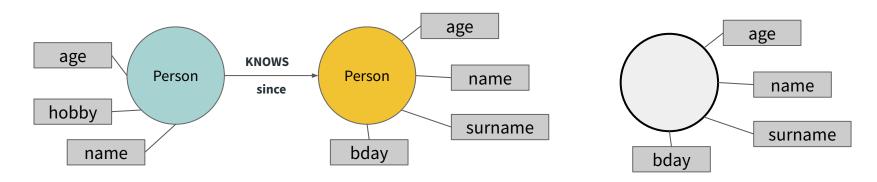


Pattern 1: {Person}, {age, hobby, name}

Pattern 2: {Person}, {age, name, surname, bday}

Pattern 3: {∅}, {age, name, surname, bday}

We identify patterns in the data in order to extract our types.

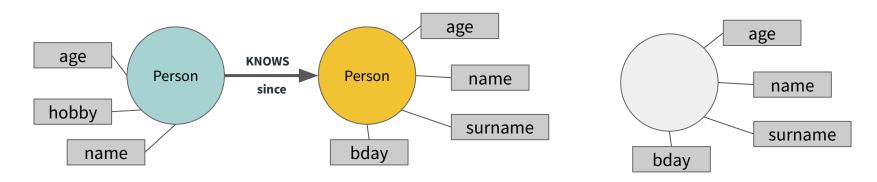


Pattern 1: {Person}, {age, hobby, name}

Pattern 2: {Person}, {age, name, surname, bday}

Pattern 3: {∅}, {age, name, surname, bday}

We identify patterns in the data in order to extract our types.



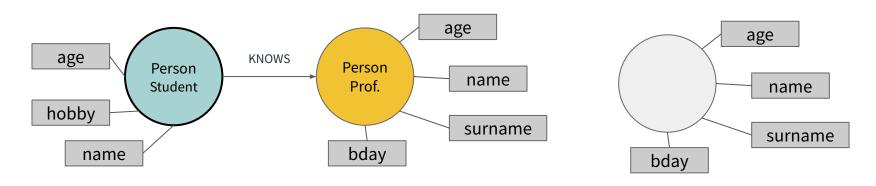
Pattern 1: {Person}, {age, hobby, name}

Pattern 2: {Person}, {age, name, surname, bday}

Pattern 3: {∅}, {age, name, surname, bday}

Pattern 4: {KNOWS}, {Person}, {Person}, {since}

We identify patterns in the data in order to extract our types.

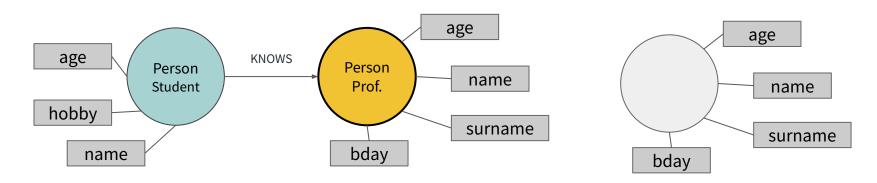


Pattern 5: {Person, Student}, {age, hobby, name}

Pattern 6: {Person, Prof.}, {age, name, surname, bday}

Pattern 7: {KNOWS}, {Person}, {∅}

We identify patterns in the data in order to extract our types.

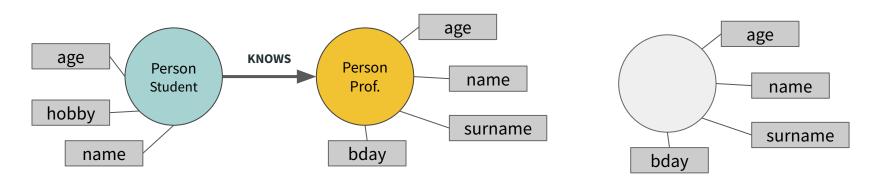


Pattern 5: {Person, Student}, {age, hobby, name}

Pattern 6: {Person, Prof.}, {age, name, surname, bday}

Pattern 7: {KNOWS}, {Person}, {∅}

We identify patterns in the data in order to extract our types.



Pattern 5: {Person, Student}, {age, hobby, name}

Pattern 6: {Person, Prof.}, {age, name, surname, bday}

Pattern 7: {KNOWS}, {Person}, {Ø}

PG-HIVE: Hybrid Incremental Schema Discovery for PGs

HYBRID

INCREMENTAL

Labels

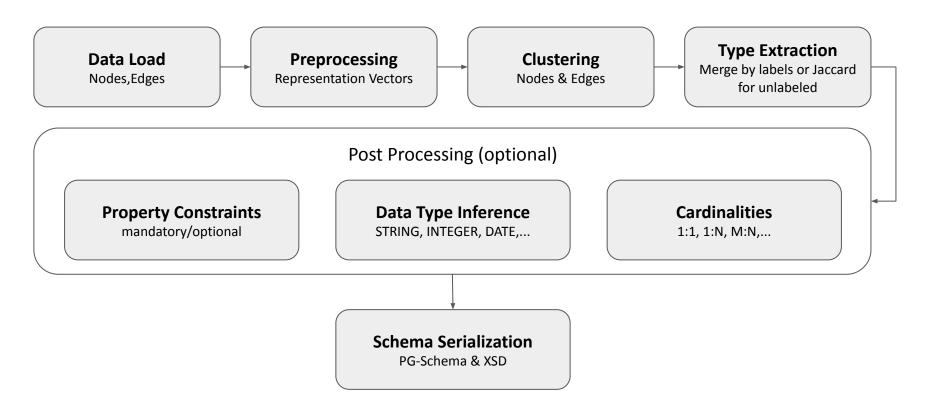
Properties

Graph characteristics

Batch processing

Merging schemas

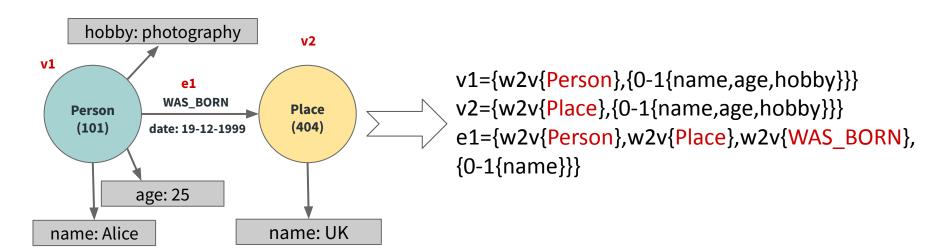
PG-HIVE: Hybrid Incremental Schema Discovery for PGs



PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

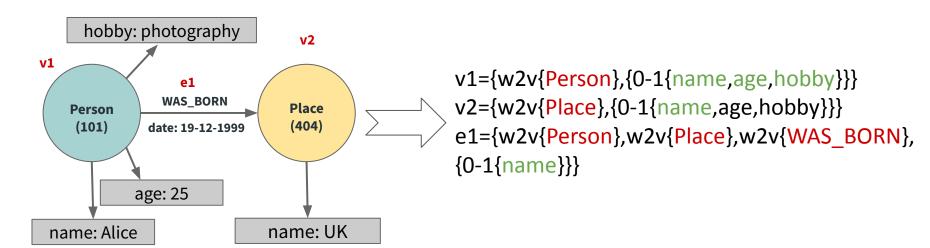
```
vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}
```



PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

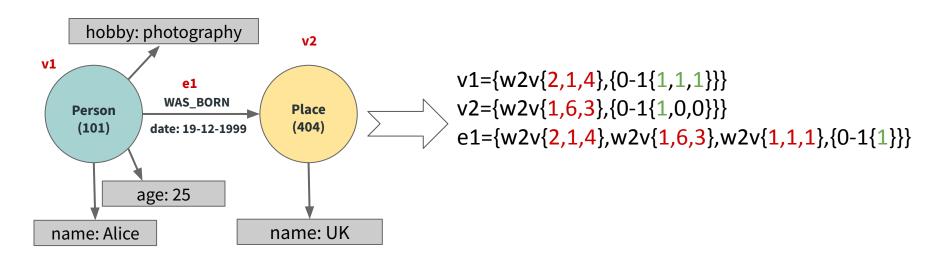
```
vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}
```



PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

```
vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}
```



PG-HIVE: Clustering

We use two clustering algorithms:

ELSH

Euclidean distance

Parameters: **T, b**

T: number of hash tables

b: bucket length

Performs better in *feature vectors*

MinHash LSH

Jaccard Similarity

Parameter: **T**

T: number of hash tables

Performs better in set-like data

PG-HIVE: Clustering

We use two clustering algorithms:

ELSH

Euclidean distance

Parameters: **T, b**

T: number of hash tables

b: bucket length

Performs better in *feature vectors*

MinHash LSH

Jaccard Similarity

Parameter: **T**

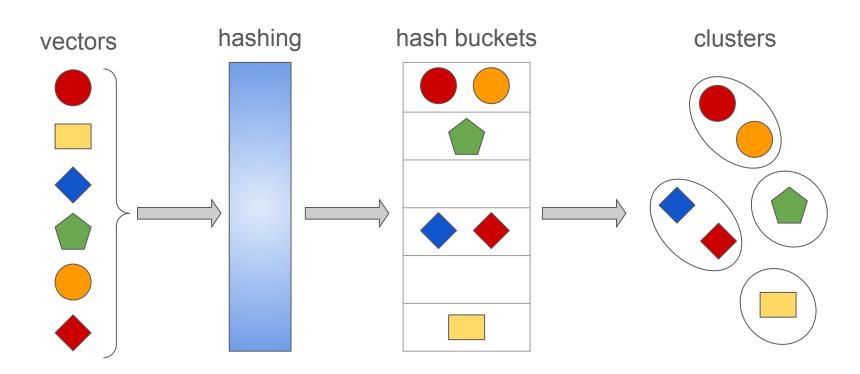
T: number of hash tables

Performs better in set-like data

How to choose the best parameters?

PG-HIVE: LSH

How does LSH work?



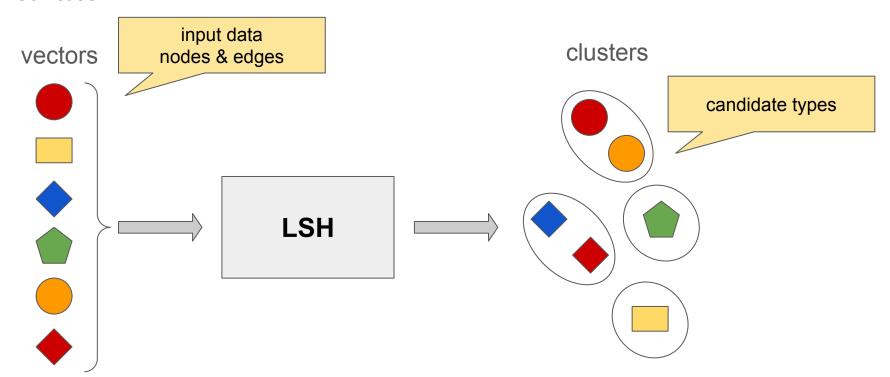
PG-HIVE: LSH more hash tables $T \Rightarrow$ more chances to collide How does LSH work? hashing hash buckets clusters vectors

PG-HIVE: LSH

bigger hash buckets $b \Rightarrow$ more collisions How does LSH work? hash buckets hashing clusters vectors

PG-HIVE: LSH

In our case



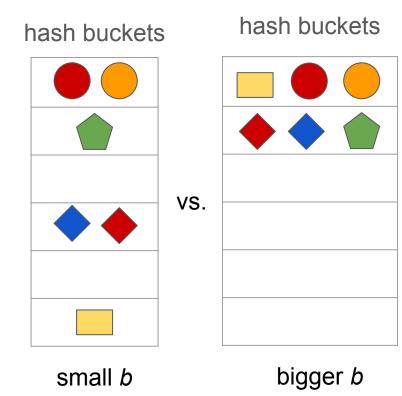
PG-HIVE: Adaptive parameterization

To avoid manual tuning of LSH, we introduce an adaptive selection of b and T.

For sparse graph we increase the bucket length and hash tables

For less sparse graphs we decrease them

increasing $T \Rightarrow$ more chances to collide increasing $b \Rightarrow$ more collisions, higher recall but lower precision



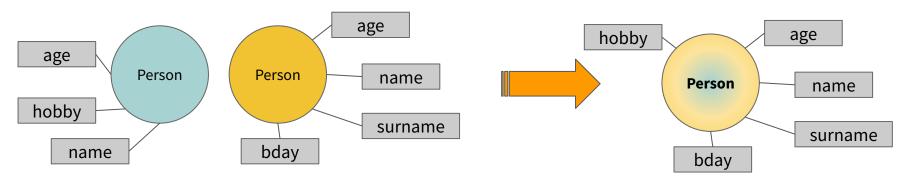
PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)



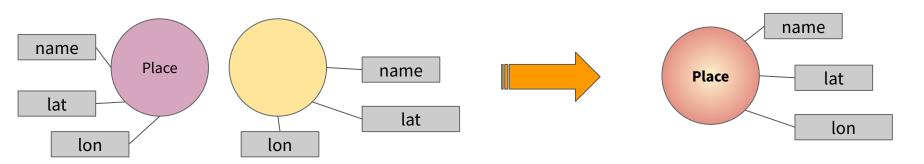
PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (*iff* **Jaccard > 0.9)**

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)



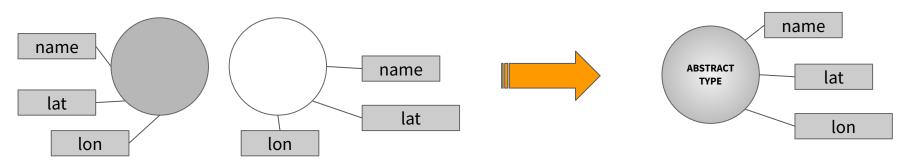
PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

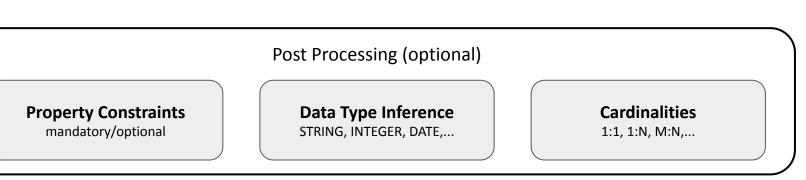
Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)



PG-HIVE: Post Processing

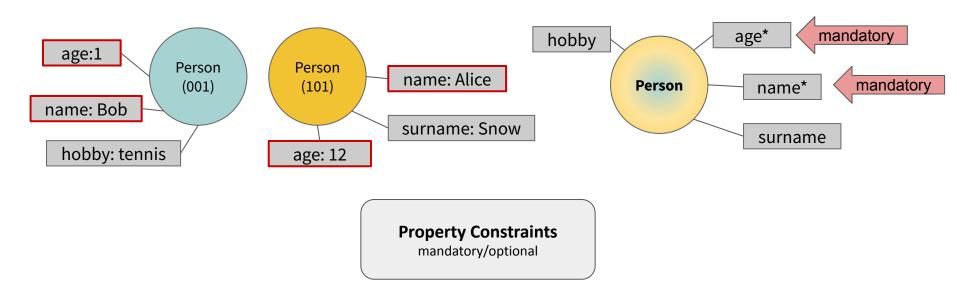
The post processing step is optional infers:

- (i) property constraints
- (ii) data type inference
- (iii) cardinalities



PG-HIVE: Post Processing - Property Constraints

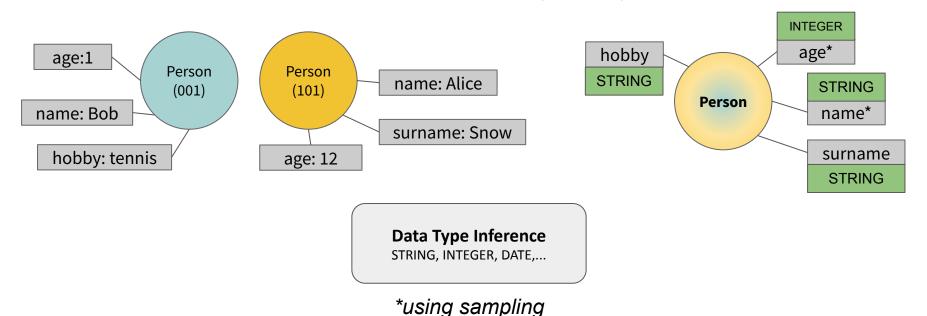
A property is characterized as **mandatory** for a given type if it appears in every instance of that type, otherwise, it is considered **optional**.



PG-HIVE: Post Processing - Data Types

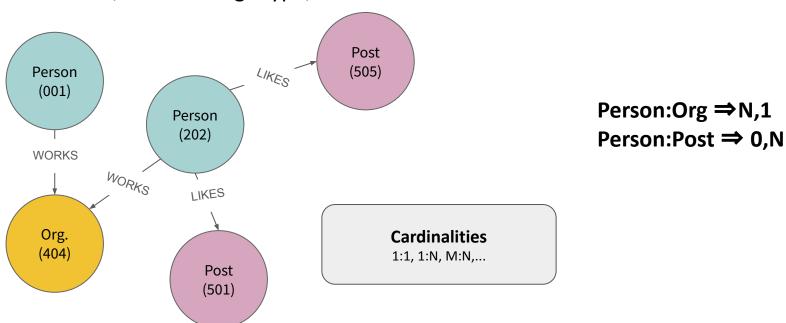
We use heuristics to find the data type of each property:

INTEGER \rightarrow FLOAT \rightarrow BOOLEAN \rightarrow DATE \rightarrow STRING (fallback)



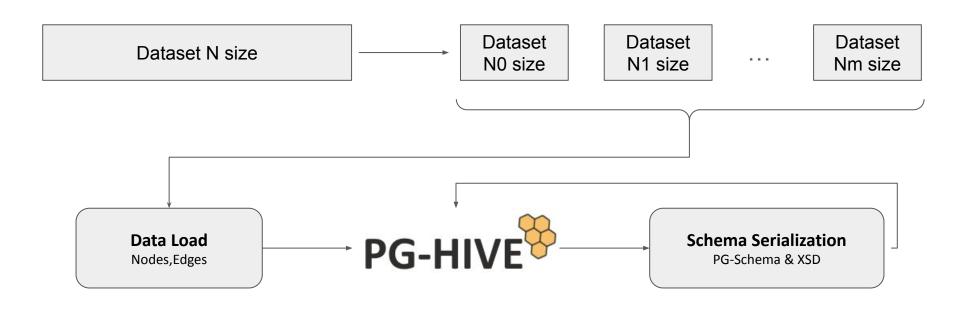
PG-HIVE: Post Processing - Cardinalities

To find the cardinalities of edge types, we query how many distinct targets each source connects to, for each edge type, and vice versa.



PG-HIVE: Incremental Module

To process big datasets in different settings we have also an incremental module



PG-HIVE: Serialization - XSD

```
<xs:schema name="NewGraphSchema" xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:complexType name="Place">
    <xs:sequence>
      <xs:element name="type" type="xs:string" min0ccurs="1" max0ccurs="1"/>
      <xs:element name="name" type="xs:string" min0ccurs="1" max0ccurs="1"/>
      <xs:element name="id" type="xs:double" min0ccurs="1" max0ccurs="1"/>
      <xs:element name="url" type="xs:string" min0ccurs="1" max0ccurs="1"/>
    </xs:sequence>
    <xs:attribute name="id" type="xs:ID" use="required"/>
    <xs:attribute name="label" type="xs:string"/>
  </xs:complexType>
  <xs:complexType name="Person">
    <xs:sequence>
      <xs:element name="lastName" type="xs:string" min0ccurs="1" max0ccurs="1"/>
      <xs:element name="firstName" type="xs:string" min0ccurs="1" max0ccurs="1"/>
      <xs:element name="birthday" type="xs:date" min0ccurs="1" max0ccurs="1"/>
    </xs:sequence>
    <xs:attribute name="id" type="xs:ID" use="required"/>
    <xs:attribute name="label" type="xs:string"/>
  </xs:complexType>
  <xs:complexType name="IS_LOCATED_IN">
    <xs:sequence>
      <xs:element name="source" type="Person"/>
      <xs:element name="target" type="Place"/>
    </xs:sequence>
  </xs:complexType>
</xs:schema>
```

PG-HIVE: Serialization - PG-Schema

```
CREATE GRAPH TYPE NewGraphSchema LOOSE {
                                                                                              LOOSE
  (PlaceType: Place {type STRING, name STRING, id DOUBLE, url STRING}),
  (PersonType: Person {lastName STRING, firstName STRING, birthday DATE}),
  (EmailType: Email {address STRING}),
  (:PersonType)-[HAS_EMAILType: HAS_EMAIL]->(:EmailType),
  (:PersonType)-[IS_LOCATED_INType: IS_LOCATED_IN]->(:PlaceType),
                             CREATE NODE TYPE PlaceType : Place {type STRING, name STRING, id DOUBLE, url STRING};
                             CREATE NODE TYPE PersonType : Person {lastName STRING, firstName STRING, birthday DATE};
                             CREATE NODE TYPE EmailType : Email {address STRING};
                            CREATE EDGE TYPE has_emailType : HAS_EMAIL;
                             CREATE EDGE TYPE is_located_inType : IS_LOCATED_IN;
                             CREATE GRAPH TYPE NewGraphSchema STRICT {
                               (PlaceType),
                               (PersonType),
        STRICT
                               (EmailType),
                               (:PersonType)-[has_emailType]->(:EmailType),
                               (:PersonType)-[is_located_inType]->(:PlaceType),
                               FOR (x:EmailType) SINGLETON x WITHIN (:PersonType)-[y: has_emailType]->(x)
                               FOR (x:PersonType) SINGLETON y WITHIN (x)-[y: is_located_inType]->(:PlaceType)
```

Part 3:

Evaluation

Previous Work on Schema Discovery for PGs

	Scheml ¹	GMMSchema ²	DiscoPG ³	PG-HIVE (ours)	
Label Independent	×	×	×	V	
Multi Labeled Elements	×	V	V		
Schema Elements	Nodes & Edges	Nodes only	Nodes & queries associated Edges	Nodes & Edges & constraints	
Constraints	×	×	×	V	
Incremental	×	×	V	V	
Automation	V	V	✓ + UI	V	
Notes	Cannot handle missing labels	GMM clustering, can not handle missing labels	Demo of GMMSchema	LSH + fine tuning	

¹Scheml:Lbath, H., Bonifati, A., Harmer, R.: Schema inference for property graphs.EDBT 2021

²GMMSchema: Bonifati, A., Dumbrava, S., Mir, N.: Hierarchical clustering for property graph schema discovery. EDBT 2022

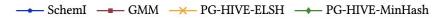
³DiscoPG:Bonifati, A., Dumbrava, S., Martinez, E., Ghasemi, F., Jaffré, M., Luton, P., Pickles, T.: Discopg: Property graph schema discovery and exploration. Proc. VLDB 2022

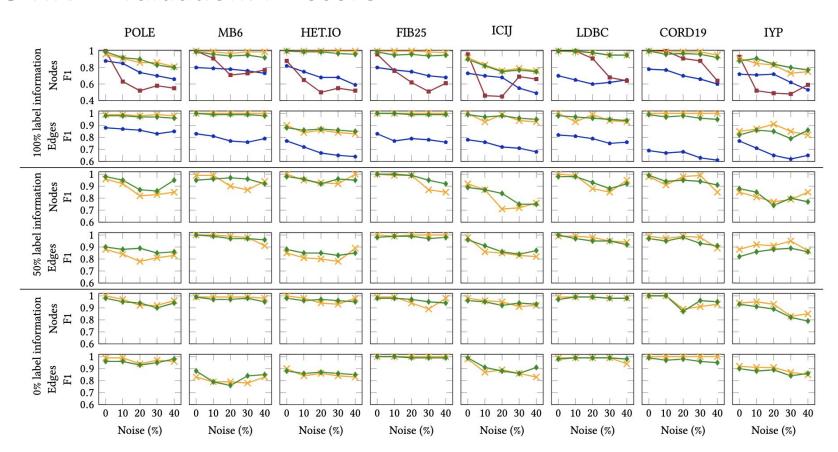
PG-HIVE Evaluation: Datasets

			Node	Edge	Node	Edge	Node	Edge	Real
Dataset	Nodes	Edges	Types	Types	Labels	Labels	Pat.	Pat.	Synth.
POLE	61,521	105,840	11	17	11	16	11	16	S
MB6	486,267	961,571	4	5	10	3	52	9	S
HET.IO	47,031	2,250,197	11	24	12	24	14	38	R
FIB25	802,473	1,625,428	4	5	10	3	31	9	S
ICIJ	2,016,523	3,339,267	5	14	6	14	2,263	88	R
LDBC	3,181,724	17,256,038	7	17	8	15	9	23	S
CORD19	36,025,729	59,768,373	6	5	6	5	89	6	R
IYP	44,539,999	251,432,812	32	24	33	24	25,137	790	R

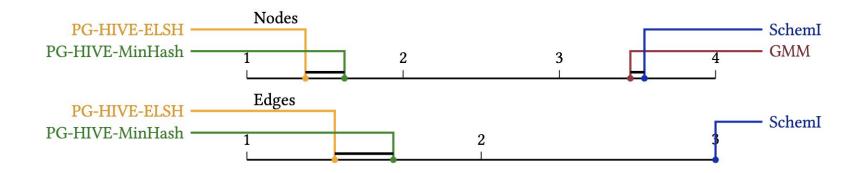
Environment: Spark cluster (4 nodes × 38 cores), Scala 2.12.10, Neo4j 4.4.0

PG-HIVE Evaluation: F1-score



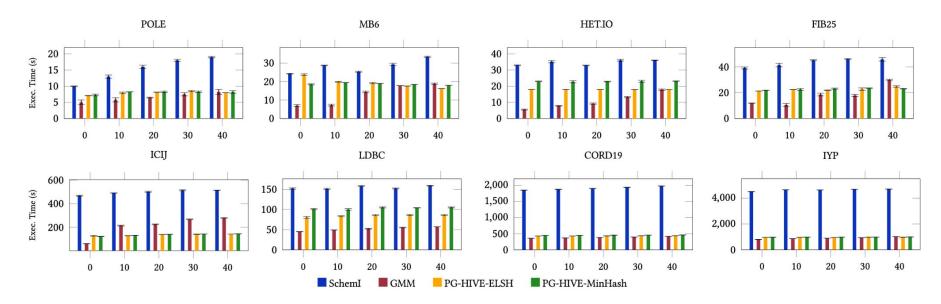


PG-HIVE Evaluation: Statistical Significance



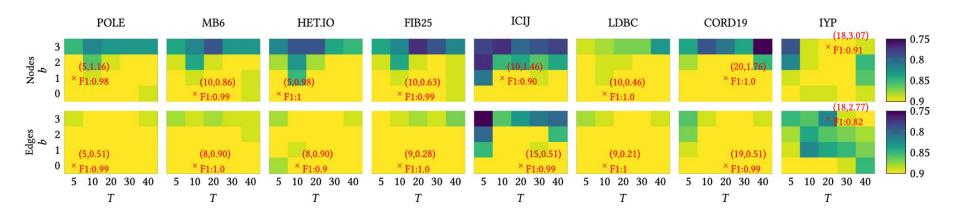
Statistical significance analysis of F1-scores across datasets for **nodes (top)** and **edges (bottom)** --GMM does not produce edge types.

PG-HIVE Evaluation: Execution Time



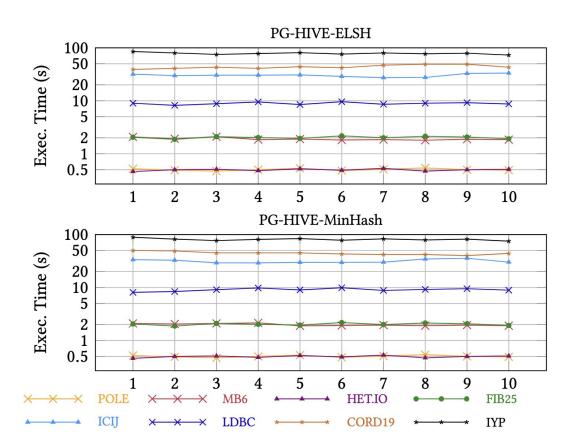
Execution time until type discovery on each dataset across different noise percentages (0% - 40%)

PG-HIVE Evaluation: Adaptive Parameterization



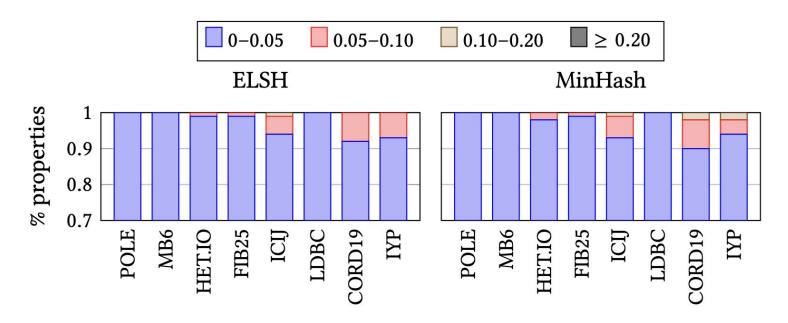
Heatmaps of F1-scores across datasets (100% label availability & 0% noise) for nodes (top) and edges (bottom) with varying T and b; red × (T, b) denotes the adaptive choice for ELSH.

PG-HIVE Evaluation: Incremental Execution



Incremental execution time per iteration. We separate each dataset in 10 equal parts.

PG-HIVE Evaluation: Data Type Inference Sampling Error



Distribution of data type inference errors using sampling, across datasets for ELSH (left) and MinHash (right).

Future Work

Schema Discovery:

- Handle unlabeled and highly sparse graphs
- Use LLMs to align and normalize labels across datasets/languages
- Support provenance, versioning, and schema evolution
- Use association rule mining to discover subtypes

Thank you

PG-HIVE github repo