
Schema Discovery

CS-562 Lab 5
Sophia Sideri



Preliminaries

RDF & Property Graphs:

● RDF: subject–predicate–object triples, semantic interoperability via ontologies.

● PGs: nodes/edges with labels and key–value properties; flexible, used in industry.

Both are labeled graphs.

Key difference: RDF edges (triples) can’t hold properties; PG edges can.
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Schema Discovery Problem in PGs

“Given a property graph of arbitrary size and structure, with missing type information, 
heterogeneous properties, and frequent updates, infer the schema graph 

efficiently and accurately.”

Label heterogeneity and 
ambiguity

Efficiency

Evolving datasets

Schema constraint level

Challenges:



Ambiguities in Schema Discovery in PGs 

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties
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Ambiguities in Integrated Datasets

No one was an imposter, but how could 
we know?

The data had different type labels, and 
different properties.

Spider-Man: No Way Home (2021)



What is a type?



Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since



Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since



Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since



Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since



Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since



Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS



Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS



Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS



PG-HIVE



PG-HIVE: Hybrid Incremental Schema Discovery for PGs
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PG-HIVE: Hybrid Incremental Schema Discovery for PGs

Data Load
Nodes,Edges

Preprocessing
Representation Vectors

Clustering
Nodes & Edges

Type Extraction
Merge by labels or Jaccard 

for unlabeled

Property Constraints
mandatory/optional

Data Type Inference
STRING, INTEGER, DATE,...

Cardinalities
1:1, 1:N, M:N,...

Post Processing (optional)

Schema Serialization
PG-Schema & XSD



PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:
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ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}

v1={w2v{Person},{0-1{name,age,hobby}}}
v2={w2v{Place},{0-1{name,age,hobby}}}
e1={w2v{Person},w2v{Place},w2v{WAS_BORN},
{0-1{name}}}

e1
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PG-HIVE: Clustering

We use two clustering algorithms:

ELSH
Euclidean distance

Parameters: T, b
T: number of hash tables

b: bucket length
Performs better in feature vectors

MinHash LSH
Jaccard Similarity

Parameter: T
T: number of hash tables

Performs better in set-like data
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How to choose the best parameters?



PG-HIVE: LSH

How does LSH work?

hashing hash buckets clustersvectors
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PG-HIVE: LSH

How does LSH work?

hashing hash buckets clustersvectors

bigger hash buckets b ⇒ more collisions 



PG-HIVE: LSH

In our case

clustersvectors

LSH

input data
nodes & edges

candidate types



PG-HIVE: Adaptive parameterization

To avoid manual tuning of LSH, we introduce an 

adaptive selection of 𝑏 and 𝑇.

For sparse graph we increase the bucket 

length and hash tables

For less sparse graphs we decrease them

hash buckets

small b

hash buckets

bigger b

vs.

increasing 𝑇 ⇒ more chances to collide
increasing b ⇒ more collisions, higher recall 
but lower precision



PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones 

that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9) 
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PG-HIVE: Post Processing

The post processing step is optional infers:

(i) property constraints

(ii) data type inference

(iii) cardinalities

Property Constraints
mandatory/optional

Data Type Inference
STRING, INTEGER, DATE,...

Cardinalities
1:1, 1:N, M:N,...

Post Processing (optional)



PG-HIVE: Post Processing - Property Constraints

A property is characterized as mandatory for a given type if it appears in every instance of 

that type, otherwise, it is considered optional.

Property Constraints
mandatory/optional
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age:1
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age: 12
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age*

name*

surname

hobby mandatory

mandatory



PG-HIVE: Post Processing - Data Types

We use heuristics to find the data type of each property:

INTEGER → FLOAT → BOOLEAN → DATE → STRING (fallback)

Data Type Inference
STRING, INTEGER, DATE,...
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age:1
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age: 12

Person

age*

name*

surname

hobby
STRING
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STRING

STRING

*using sampling



PG-HIVE: Post Processing - Cardinalities

To find the cardinalities of edge types, we query how many distinct targets each source 

connects to, for each edge type, and vice versa.

Cardinalities
1:1, 1:N, M:N,...

Person
(001)

Person
(202)

Org.
(404)

WORKS

WORKS

Post
(501)

Post
(505)LIKES

LIKES

Person:Org ⇒N,1
Person:Post ⇒ 0,N



PG-HIVE: Incremental Module

To process big datasets in different settings we have also an incremental module 

Data Load
Nodes,Edges

Schema Serialization
PG-Schema & XSD

Dataset N size Dataset 
N0 size

Dataset 
N1 size

Dataset 
Nm size…



PG-HIVE: Serialization - XSD



PG-HIVE: Serialization - PG-Schema
LOOSE

STRICT



Part 3:

Evaluation



Previous Work on Schema Discovery for PGs

SchemI1 GMMSchema2 DiscoPG3 PG-HIVE (ours)

Label Independent ❌ ❌ ❌ ✅

Multi Labeled Elements ❌ ✅ ✅ ✅

Schema Elements Nodes & Edges Nodes only Nodes & queries 
associated Edges

Nodes & Edges & 
constraints

Constraints ❌ ❌ ❌ ✅

Incremental ❌ ❌ ✅ ✅

Automation ✅ ✅ ✅ + UI ✅

Notes Cannot handle missing 
labels

GMM clustering, can not 
handle missing labels

Demo of GMMSchema LSH + fine tuning

1SchemI:Lbath, H., Bonifati, A., Harmer, R.: Schema inference for property graphs.EDBT 2021
2GMMSchema: Bonifati, A., Dumbrava, S., Mir, N.: Hierarchical clustering for property graph schema discovery. EDBT 2022 
3DiscoPG:Bonifati, A., Dumbrava, S., Martinez, E., Ghasemi, F., Jaffré, M., Luton, P., Pickles, T.: Discopg: Property graph schema discovery and exploration. Proc. VLDB 2022



PG-HIVE Evaluation: Datasets

Environment: Spark cluster (4 nodes × 38 cores), Scala 2.12.10, Neo4j 4.4.0



PG-HIVE Evaluation: F1-score



PG-HIVE Evaluation: Statistical Significance

Statistical significance analysis of F1-scores across datasets for nodes (top) 
and edges (bottom) --GMM does not produce edge types.



PG-HIVE Evaluation: Execution Time

Execution time until type discovery on each dataset across different noise 
percentages (0% - 40%)



PG-HIVE Evaluation: Adaptive Parameterization

Heatmaps of F1-scores across datasets (100% label availability & 0% noise) 
for nodes (top) and edges (bottom) with varying 𝑇 and b; 
red × (𝑇 , b) denotes the adaptive choice for ELSH.



PG-HIVE Evaluation: Incremental Execution

Incremental execution time per 
iteration. We separate each 
dataset in 10 equal parts.



PG-HIVE Evaluation: Data Type Inference Sampling Error 

Distribution of data type inference errors using sampling, across datasets for ELSH 
(left) and MinHash (right).



Future Work

Schema Discovery: 

● Handle unlabeled and highly sparse graphs 
● Use LLMs to align and normalize labels across datasets/languages 
● Support provenance, versioning, and schema evolution
● Use association rule mining to discover subtypes



Thank you

PG-HIVE github repo


