
Schema Discovery

CS-562 Lab 5
Sophia Sideri

Preliminaries

RDF & Property Graphs:

● RDF: subject–predicate–object triples, semantic interoperability via ontologies.

● PGs: nodes/edges with labels and key–value properties; flexible, used in industry.

Both are labeled graphs.

Key difference: RDF edges (triples) can’t hold properties; PG edges can.

subject

object

literal

= URI

= literal

= property

predicate

predicate

node

node

edge
{key:value}

key:value

key:value

= node

= primitive data
type

key:value

= relation{key:value}
RDF

PG

Preliminaries

RDF & Property Graphs:

● RDF: subject–predicate–object triples, semantic interoperability via ontologies.

● PGs: nodes/edges with labels and key–value properties; flexible, used in industry.

Both are labeled graphs.

Key difference: RDF edges (triples) can’t hold properties; PG edges can.

subject

object

literal

= URI

= literal

= property

predicate

predicate

node

node

edge
{key:value}

key:value

key:value

= node

= primitive data
type

key:value

= relation{key:value}
RDF

PG

:Alice :Birth of
Alice

E21_Person E67_Birth

:UK

E53_Place

19-12-1999E52_
Timespan

:2020

RDF
(CIDOC-CRM)

PG

Person
(101)

name: Alice

Place
(404)

name: UK

crm:P98i_was
_born

crm:P4_has_
time-span

crm:P7_took
_place_at

a a

a

a

P82a_begin_
of_the_begin

WAS_BORN_IN

date: 19-12-1999

Alice

rdfs:label

Birth of
Alice

rdfs:label

UK

rdfs:label

Schema Discovery Problem in PGs

“Given a property graph of arbitrary size and structure, with missing type information,
heterogeneous properties, and frequent updates, infer the schema graph

efficiently and accurately.”

Label heterogeneity and
ambiguity

Efficiency

Evolving datasets

Schema constraint level

Challenges:

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

Actor
Person

Professor

Actor
Person

Person
Student Actor Person

Actor
Organiz-

ation

We cannot assume that these are the same type

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

type0
type1
type2

type3
type4

type1
type2 type2 type1 type0

type5

We cannot assume that these are the same type

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

column2
row4
cell3

#ok
f454_

@bc
lalal _sd$22 _p33 type

_sth

We cannot assume that these are the same type

These are usually the
types you are going to find

in real noisy datasets

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

We cannot assume that these are the same type

ΆνθρωποςPerson Human Homo
Sapiens

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

We cannot assume that these are the same type

Person

hobby

name

age

age

name

surname

bday

name

surname

Ambiguities in Schema Discovery in PGs

In real datasets we might have several difficult cases to identify types:

Case 1: Many labels assigned to each instance

Case 2: Different labels referring to the semantically same entity

Case 3: Missing labels to some instances

Case 4: No labels to all instances and inconsistent properties

We cannot assume that these are the same type

hobby

name

age

age

name

surname

bday

name

surname

SM

name:
Tobey

Ambiguities in Integrated Datasets

Dataset: Spider-Man

SM

TA-
SM

first name:
Andrew

name:
Tobey

last name:
Garfield

Ambiguities in Integrated Datasets

Dataset: Spider-Man Dataset: The Amazing
Spider-Man

S-MSM

TA-
SM

fullName: Tom
Holland

first name:
Andrew

name:
Tobey

last name:
Garfield

Ambiguities in Integrated Datasets

Dataset: Spider-Man Dataset: The Amazing
Spider-Man

Dataset: Spider-Man,
Homecoming

S-M

SM

TA-
SM

fullName: Tom
Holland

first name:
Andrew

name:
Tobey

Is anyone the imposter? 👀

POINTS_TO

POINTS_TO

ACCUSES
ACCUSES

last name:
Garfield

Ambiguities in Integrated Datasets

Ambiguities in Integrated Datasets

No one was an imposter, but how could
we know?

The data had different type labels, and
different properties.

Spider-Man: No Way Home (2021)

What is a type?

Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since

Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since

Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since

Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since

Patterns & Types

We identify patterns in the data in order to extract our types.

Person Person

hobby

name

age

age

name

surname
bday

Pattern 1: {Person}, {age, hobby, name}
Pattern 2: {Person}, {age, name, surname, bday}
Pattern 3: {∅}, {age, name, surname, bday}
Pattern 4: {KNOWS}, {Person}, {Person}, {since}

age

name

surname
bday

KNOWS

since

Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS

Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS

Patterns & Types

We identify patterns in the data in order to extract our types.

Person
Student

Person
Prof.

hobby

name

age

age

name

surname
bday

Pattern 5: {Person,Student}, {age, hobby, name}
Pattern 6: {Person,Prof.}, {age, name, surname, bday}
Pattern 7: {KNOWS}, {Person}, {Person}, {∅}

age

name

surname
bday

KNOWS

PG-HIVE

PG-HIVE: Hybrid Incremental Schema Discovery for PGs

HYBRID
Labels

Properties

Graph characteristics

INCREMENTAL
Batch processing

Merging schemas

PG-HIVE: Hybrid Incremental Schema Discovery for PGs

Data Load
Nodes,Edges

Preprocessing
Representation Vectors

Clustering
Nodes & Edges

Type Extraction
Merge by labels or Jaccard

for unlabeled

Property Constraints
mandatory/optional

Data Type Inference
STRING, INTEGER, DATE,...

Cardinalities
1:1, 1:N, M:N,...

Post Processing (optional)

Schema Serialization
PG-Schema & XSD

PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

Person
(101)

name: Alice

Place
(404)

name: UK

WAS_BORN

date: 19-12-1999

v1
v2

age: 25

hobby: photography

vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}

v1={w2v{Person},{0-1{name,age,hobby}}}
v2={w2v{Place},{0-1{name,age,hobby}}}
e1={w2v{Person},w2v{Place},w2v{WAS_BORN},
{0-1{name}}}

e1

PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

Person
(101)

name: Alice

Place
(404)

name: UK

WAS_BORN

date: 19-12-1999

v1
v2

age: 25

hobby: photography

vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}

v1={w2v{Person},{0-1{name,age,hobby}}}
v2={w2v{Place},{0-1{name,age,hobby}}}
e1={w2v{Person},w2v{Place},w2v{WAS_BORN},
{0-1{name}}}

e1

PG-HIVE: Data Loading

We load data from PG storage (Neo4j) and transform them into vectors:

Person
(101)

name: Alice

Place
(404)

name: UK

WAS_BORN

date: 19-12-1999

v1
v2

age: 25

hobby: photography

vi={{Word2Vec_label},{one-hot encoded properties}}
ei={{Word2Vec_src},{Word2Vec_tgt},{Word2Vec_label},{one-hot encoded properties}}

v1={w2v{2,1,4},{0-1{1,1,1}}}
v2={w2v{1,6,3},{0-1{1,0,0}}}
e1={w2v{2,1,4},w2v{1,6,3},w2v{1,1,1},{0-1{1}}}

e1

PG-HIVE: Clustering

We use two clustering algorithms:

ELSH
Euclidean distance

Parameters: T, b
T: number of hash tables

b: bucket length
Performs better in feature vectors

MinHash LSH
Jaccard Similarity

Parameter: T
T: number of hash tables

Performs better in set-like data

PG-HIVE: Clustering

We use two clustering algorithms:

ELSH
Euclidean distance

Parameters: T, b
T: number of hash tables

b: bucket length
Performs better in feature vectors

MinHash LSH
Jaccard Similarity

Parameter: T
T: number of hash tables

Performs better in set-like data

How to choose the best parameters?

PG-HIVE: LSH

How does LSH work?

hashing hash buckets clustersvectors

PG-HIVE: LSH

How does LSH work?

hashing hash buckets clustersvectors

more hash tables T ⇒ more chances to collide

PG-HIVE: LSH

How does LSH work?

hashing hash buckets clustersvectors

bigger hash buckets b ⇒ more collisions

PG-HIVE: LSH

In our case

clustersvectors

LSH

input data
nodes & edges

candidate types

PG-HIVE: Adaptive parameterization

To avoid manual tuning of LSH, we introduce an

adaptive selection of 𝑏 and 𝑇.

For sparse graph we increase the bucket

length and hash tables

For less sparse graphs we decrease them

hash buckets

small b

hash buckets

bigger b

vs.

increasing 𝑇 ⇒ more chances to collide
increasing b ⇒ more collisions, higher recall
but lower precision

PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones

that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)

Person Person

hobby

name

age

age

name

surname
bday

Person

age

name

surname
bday

hobby

PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones

that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)

Place

lat

lon

name
name

lat
lon

Place

name

lat

lon

PG-HIVE: Extracting Types

After the clustering step, we refine the candidate node/edge types by merging the ones

that correspond to the same schema type

Step 1: Same label

Step 2: Unlabeled clusters with Labeled ones (iff Jaccard > 0.9)

Step 3: Unlabeled clusters with the remaining unlabeled (iff Jaccard > 0.9)

lat

lon

name
name

lat
lon

ABSTRACT
TYPE

name

lat

lon

PG-HIVE: Post Processing

The post processing step is optional infers:

(i) property constraints

(ii) data type inference

(iii) cardinalities

Property Constraints
mandatory/optional

Data Type Inference
STRING, INTEGER, DATE,...

Cardinalities
1:1, 1:N, M:N,...

Post Processing (optional)

PG-HIVE: Post Processing - Property Constraints

A property is characterized as mandatory for a given type if it appears in every instance of

that type, otherwise, it is considered optional.

Property Constraints
mandatory/optional

Person
(001)

Person
(101)

name: Bob

hobby: tennis

age:1
name: Alice

surname: Snow
age: 12

Person

age*

name*

surname

hobby mandatory

mandatory

PG-HIVE: Post Processing - Data Types

We use heuristics to find the data type of each property:

INTEGER → FLOAT → BOOLEAN → DATE → STRING (fallback)

Data Type Inference
STRING, INTEGER, DATE,...

Person
(001)

Person
(101)

name: Bob

hobby: tennis

age:1
name: Alice

surname: Snow
age: 12

Person

age*

name*

surname

hobby
STRING

INTEGER

STRING

STRING

*using sampling

PG-HIVE: Post Processing - Cardinalities

To find the cardinalities of edge types, we query how many distinct targets each source

connects to, for each edge type, and vice versa.

Cardinalities
1:1, 1:N, M:N,...

Person
(001)

Person
(202)

Org.
(404)

WORKS

WORKS

Post
(501)

Post
(505)LIKES

LIKES

Person:Org ⇒N,1
Person:Post ⇒ 0,N

PG-HIVE: Incremental Module

To process big datasets in different settings we have also an incremental module

Data Load
Nodes,Edges

Schema Serialization
PG-Schema & XSD

Dataset N size Dataset
N0 size

Dataset
N1 size

Dataset
Nm size…

PG-HIVE: Serialization - XSD

PG-HIVE: Serialization - PG-Schema
LOOSE

STRICT

Part 3:

Evaluation

Previous Work on Schema Discovery for PGs

SchemI1 GMMSchema2 DiscoPG3 PG-HIVE (ours)

Label Independent ❌ ❌ ❌ ✅

Multi Labeled Elements ❌ ✅ ✅ ✅

Schema Elements Nodes & Edges Nodes only Nodes & queries
associated Edges

Nodes & Edges &
constraints

Constraints ❌ ❌ ❌ ✅

Incremental ❌ ❌ ✅ ✅

Automation ✅ ✅ ✅ + UI ✅

Notes Cannot handle missing
labels

GMM clustering, can not
handle missing labels

Demo of GMMSchema LSH + fine tuning

1SchemI:Lbath, H., Bonifati, A., Harmer, R.: Schema inference for property graphs.EDBT 2021
2GMMSchema: Bonifati, A., Dumbrava, S., Mir, N.: Hierarchical clustering for property graph schema discovery. EDBT 2022
3DiscoPG:Bonifati, A., Dumbrava, S., Martinez, E., Ghasemi, F., Jaffré, M., Luton, P., Pickles, T.: Discopg: Property graph schema discovery and exploration. Proc. VLDB 2022

PG-HIVE Evaluation: Datasets

Environment: Spark cluster (4 nodes × 38 cores), Scala 2.12.10, Neo4j 4.4.0

PG-HIVE Evaluation: F1-score

PG-HIVE Evaluation: Statistical Significance

Statistical significance analysis of F1-scores across datasets for nodes (top)
and edges (bottom) --GMM does not produce edge types.

PG-HIVE Evaluation: Execution Time

Execution time until type discovery on each dataset across different noise
percentages (0% - 40%)

PG-HIVE Evaluation: Adaptive Parameterization

Heatmaps of F1-scores across datasets (100% label availability & 0% noise)
for nodes (top) and edges (bottom) with varying 𝑇 and b;
red × (𝑇 , b) denotes the adaptive choice for ELSH.

PG-HIVE Evaluation: Incremental Execution

Incremental execution time per
iteration. We separate each
dataset in 10 equal parts.

PG-HIVE Evaluation: Data Type Inference Sampling Error

Distribution of data type inference errors using sampling, across datasets for ELSH
(left) and MinHash (right).

Future Work

Schema Discovery:

● Handle unlabeled and highly sparse graphs
● Use LLMs to align and normalize labels across datasets/languages
● Support provenance, versioning, and schema evolution
● Use association rule mining to discover subtypes

Thank you

PG-HIVE github repo

